
 

 

Modeling Doxorubicin Delivery in Tumor Cells 
 
Introduction 
Doxorubicin Function and Side Effects 
Doxorubicin is a commonly used drug in chemotherapy because it has a cytotoxic effect on 
dividing cells [1].  The molecule binds with topoisomerase II, which is a protein involved in the 
unwinding of DNA during cell division [2].  This function makes doxorubicin an effective drug to 
kill cancer cells, but it is also toxic to healthy dividing cells [2].  This cytotoxicity leads to 
negative side effects, such as hair loss, stomach ulcers, and other symptoms indicative of cell 
death of rapidly dividing cells [2].  Additionally, doxorubicin has been linked to increases in 
reactive oxygen species (ROS) [3].  This is of particular concern because ROS can cause 
oxidative stress in cells, to which the heart is particularly vulnerable [3].  Figure 1 summarizes 
the cytotoxic mechanisms of DOX.  It is therefore vital that doxorubicin is delivered in a targeted 
way such that it can effectively kill the cancer cells while limiting the concentration in the rest of 
the body. 

   
 

Figure 1: Mechanism of Action of Doxorubicin in a Cancer Cell. Doxorubicin targets the cells by 
preventing DNA transcription and the production of reactive oxygen species.   Image from Thorn 
et al. 
 

Drug Delivery Methods 
Doxorubicin is typically delivered through the bloodstream, as either a bolus injection or a 
continuous perfusion via IV [4].  These methods create a baseline circulating concentration of 
the drug, which will be passively transported from the blood vessels, to the extracellular space, 
to inside cells.  These methods generate a circulating concentration of the drug throughout the 
body, so healthy dividing cells will be equally exposed to the drug as tumor cells.  Furthermore, 
the doxorubicin will be cycling through the heart, which can be dangerous due to the ROS 
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increase associated with doxorubicin.  Therefore, the amount of drug that can be administered 
is limited by these negative side effects. 
 
Targeted drug delivery is an approach that may circumvent the trade-off between high drug 
dose and increased risk from side-effects [4].  One such approach is the encapsulation of free 
drug in liposomes.  These liposomes can then be delivered to the bloodstream, where they will 
slowly degrade, which will decrease the concentration of circulating doxorubicin.  Additionally, 
these liposomes can be created in such a way that makes them sensitive to heat.  This allows 
clinicians to create targeted regions of high drug concentration based on where heat is applied. 
 

 
Figure 2: Process of Liposomal Drug Delivery. a) Liposomes circulating in bloodstream and passively 
transport out of the vasculature into the extracellular space.  b) Added heat increases the permeability of 
the blood vessels, resulting in higher concentrations of liposomes in the extracellular space. c) Heat 
causes the liposomes to dissociate and release the drug into the extracellular space, where it can be 
transported into cells.  Image from Landon et al. 
 
Methods:  
In this project, we implemented the equations published by El-Kareh and Secomb [5] to model 
the delivery of doxorubicin through a bolus injection and liposomal delivery. The liposomal 
delivery was also modeled in 2 different methods: free release and thermally sensitive release. 
In order to find a numerical solution, a 4th order Runge Kutta method was used to approximate 
a solution. The terms of the Runge Kutta method can be described as follows: 
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The same equations were used to model the concentrations of each of the different 
compartments. For the bolus injection of free drug, the concentration of doxorubicin is described 
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in the vessels, extracellular space, and intercellular space. These concentrations are 
characterized as follows: 
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The liposomal delivery is modelled as follows: 
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We modeled the release of free drug from the thermally activated liposomes as a change in the 
time constant (𝜏!").  

𝜏!!" 𝑖𝑓 𝑡 <  𝑡! 𝑜𝑟 𝑡 > 𝑡! + 𝑡! 
𝜏!!"  𝑖𝑓 𝑡! <  𝑡 <  𝑡! + 𝑡! 

The time constants follow a step function where the rate of release is constant until the input 
time is reached. At the time of this signal, the time constant is increased so that drug is released 
faster. The time constant then returns to the baseline value after a specified amount of time. 
The constants used are taken from the table found in [5] as shown below. 



 
Jonathan Schmok, William Leineweber, April Aralar 

 
Finally, as an extension to the work of El-Kareh and Secomb, we model a pulsed injection of 
heat. Rather than releasing applying heat for a single interval 𝑡! to 𝑡! + 𝑡!, we instead apply 
heat for the intervals described by 𝑡! + 𝑛𝛥𝑇to 𝑡! + 𝑛𝛥𝑇 + 𝑡!. Parameters used for this portion of 
the simulation are found in the following table. 
 

 

𝑡! 120 ms 

𝑡! 10 ms 

𝑛 0,1,2,3,4,5 

𝛥𝑇 120 ms 
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Results: 
The aforementioned equations were manually implemented in MATLAB. Scripts used for the 
numerical implementation are located in the appendix. 

 
Fig 3: The solution to the bolus injection implementation  

 

 
Fig 4: The solutions to the liposomal delivery implementation 
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Fig 5: The solutions to the thermally activated liposomal delivery 

 

 
Fig 6: The solutions to the pulsed thermally activated liposomal delivery 

 
Liposomal injection reduces free drug in bloodstream 
 
One of the primary goals of targeted drug delivery it to reduce the concentration of free drug in 
the bloodstream. As seen in Figure 1, concentration of free drug in the bloodstream following 
bolus injection reached nearly 40 ug/mL. This value was much greater than the ~13 ug/mL 
modeled by El-Kareh and Secomb, but our model still showed a quick decrease to 0, showing 
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that the larger concentration would still quickly diffuse into the cells. Following non-thermally 
activated liposomal drug delivery, the concentration reached a maximum of 0.0006 ug/mL. 
Following thermally activated drug delivery, the concentration reached a maximum of 0.4 ug/mL, 
a 100-fold improvement over the free drug bolus injection. These concentrations are much less 
than the published values of ~12 and ~8 ug/mL, showing that our model may show better 
diffusion under these conditions. 
 
Thermally activated liposomal injection increases concentration of free drug in tumor 
 
In implementing targeted drug delivery, it is also important to devise a system in which the 
concentration of free drug in the tumor does not drop significantly below the level observed 
following bolus injection. Concentration of free drug in the tumor reached a maximum of 5.5 
ng/10^5 cells following bolus injection. This agrees with the published concentration found by 
El-Kareh and Secomb. Following non-thermally activated liposomal drug delivery, the 
concentration reached a maximum of 10 ng/10^5 cells, albeit at a much longer time scale. This 
is very similar to the published value of 6 ng/10^5 cells. Following thermally activated drug 
delivery, the concentration reached a maximum of nearly 20 ng/10^5 cells. This is a much larger 
concentration than the 5 ng/10^5 cells shown in the literature, showing that our model may be 
less optimal for the thermally activated liposomes. 
 
Short pulses of heat provide better performance than single, longer-term activation 
 
Using pulse heat injection reduced the maximum concentration of free drug in the bloodstream 
by a factor of 4 in comparison with the original thermal activation model. Furthermore, this 
scheme resulted in a higher concentration of free drug at the tumor. At t = 3000 minutes, far 
after both heating schemes were finished, concentration of free drug at the tumor was 32% 
higher for the pulsed injection method. 
 
Discussion 
 
The fundamental goal of liposomal drug delivery is to reduce the concentration of free drug in 
the bloodstream, while increasing the concentration of free drug in the tumor. The model 
implemented indicates that this is a worthwhile area of pursuit to achieve these goals. By 
achieving this, clinicians will be able to reduce the side-effects of chemotherapy by localizing the 
delivery to the tumor region. By generating an easily updated mathematical model, we can also 
provide a tool that allows clinicians to test a personalized therapeutic approach before treatment 
starts. We improved the model by El-Kareh and Secomb by showing increased performance as 
a result of pulsed activation of thermoliposomes in comparison to a single, longer activation. 
Further models should be developed which better account for the spatial geometry of human 
tissue, which will better predict the localized release of doxorubicin, especially in highly-
vascularized regions.  
 
Our model showed the effects of targeted doxorubicin release generally in the vasculature, but it 
could additionally be targeted to specific tissue interfaces such as the blood brain barrier, or for 
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specific maladies such as non-Hodgkin’s lymphoma. This could be done by combining our 
model with previously published models that include these specifications [6-7]. Additionally as in 
the work done by Ribba et al [7], this model can be used to both determine the optimal 
concentration and heating needed for the individual patient and can determine the efficacy of 
standard protocols.  
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Appendix A: MATLAB Code 
 
 
clear;	clc;	close	all	
	
%%	Bolus	Injection	
	
%	Parameters	
h	=	0.01;	
tfinal	=	180;	
Vmax	=	.28*1e-6;	%mg/10^5cells/min	
P	=	1e-4*60;	%cm/min	
St	=	200;	%cm^-1	
D	=	285;	%mg	(free)	
A	=	.13;	%(1/L)	
t_half	=	4.75;	%min	
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alpha	=	.693/t_half;	
dc	=	6e3;	%10^5cells/mL	
ke	=	.219/1e3;	%mg/mL	
ki	=	1.37;	%ng/(10^5	cells)	
phi	=	.4;	
	
%	Initial	Condition	
t(1)	=	0;	
ce(1)	=	0;	
ci(1)	=	0;	
	
%	Define	the	ODE	function	handles	
%	First	for	bolus	injection	
cv	=	@(x)	D*A*exp(-alpha*x);	
dcedt	=	@(x,ce,ci)	P*St*(cv(x)-ce)-dc*Vmax*((ce/(ce+(ke*phi))-(ci/(ci+ki))));	
dcidt	=	@(x,ce,ci)	1e6*Vmax*((ce/(ce+(ke*phi)))-(ci/(ci+ki)));	%	1e6	correction	from	mg	to	
ng	
	
for	i	=	1:ceil(tfinal/h)	
				t(i+1)	=	t(i)+h;	
					
				%	First	order	Terms	
				k0=h*dcedt(t(i),ce(i),ci(i));	
				l0=h*dcidt(t(i),ce(i),ci(i));	
					
				%	Second	order	terms	
				k1=h*dcedt(t(i)+h/2,ce(i)+k0/2,ci(i)+l0/2);	
				l1=h*dcidt(t(i)+h/2,ce(i)+k0/2,ci(i)+l0/2);	
					
				%	Third	order	terms	
				k2=h*dcedt(t(i)+h/2,ce(i)+k1/2,ci(i)+l1/2);	
				l2=h*dcidt(t(i)+h/2,ce(i)+k1/2,ci(i)+l1/2);	
					
				%	Fourth	order	terms	
				k3=h*dcedt(t(i)+h,ce(i)+k2,ci(i)+l2);	
				l3=h*dcidt(t(i)+h,ce(i)+k2,ci(i)+l2);	
					
				ce(i+1)	=	ce(i)	+	(1/6)*(k0+2*k1+2*k2+k3);	
				ci(i+1)	=	ci(i)	+	(1/6)*(l0+2*l1+2*l2+l3);	
end	
	
figure;	
subplot(3,1,1);plot(t,cv(t));ylabel('c_v');	
subplot(3,1,2);plot(t,ce);ylabel('c_e');	
subplot(3,1,3);plot(t,ci);ylabel('c_i');	
	
%%	Next	for	Liposomal	Injection	
	
clear	t	
%	Parameters	
D_L	=	350;	%mg	
DG	=	86.5;	%	mg	
A1	=	6.9/1e3;	%	mg/ml	
A2	=	12.2/1e3;	%	mg/ml	
Kk1	=	0.00502;	%	1/min	
Kk2	=	0.00025;	%	1/min	
PL	=	3.4e-7*60;	%cm/min	
ST	=	200;	%1/cm	
taure	=	24*60;	%	minutes	
taurv	=	24*60;	%	minutes	
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Vt	=	50;	%mL	
VB	=	5;	%L	
	
tfinal	=	20000;	%	Larger	time	scale	needed	for	slow	release	liposomes	
h	=	0.1;	
	
%	Define	the	ODE	function	handles	
%	New	equations	
clv	=	@	(x)	(D_L/DG)*(A1*exp(-Kk1*x)+A2*exp(-Kk2*x));	
dcv_lipdt	=	@	(x,cv_lip,cle,ce_lip)	(-Vt/VB)*P*ST*(cv_lip-ce_lip)+A*VB*(clv(x)/taurv)-
alpha*cv_lip;	
dcledt	=	@	(x,cle)	PL*St*(clv(x)-cle)-(cle/taure);	
%	Include	a	term	in	the	equation	below	to	represent	release	from	liposomes	
dce_lipdt	=	@(x,ce_lip,ci_lip,cle,cv_lip)	P*St*(cv_lip-ce_lip)-
dc*Vmax*((ce_lip/(ce_lip+(ke*phi))-(ci_lip/(ci_lip+ki))))+cle/taure;		
%	No	change	in	the	equation	below	
dci_lipdt	=	@(x,ce_lip,ci_lip)	1e6*Vmax*((ce_lip/(ce_lip+(ke*phi)))-(ci_lip/(ci_lip+ki)));	
	
%	Initial	Condition	
t(1)	=	0;	
cv_lip(1)	=	0;				%mg/mL	
cle(1)	=	0;	
ce_lip(1)	=	0;	
ci_lip(1)	=	0;	
	
%	Use	Runge-Kutta	to	Solve	for	cv,	cle,	ce,	ci	
for	i	=	1:ceil(tfinal/h)	
				t(i+1)	=	t(i)+h;	
					
				%	First	order	Terms	
				k0=h*dcv_lipdt(t(i),cv_lip(i),cle(i),ce_lip(i));																																%	K	
terms	=	dcvdt	
				l0=h*dcledt(t(i),cle(i));																																																							%	L	
terms	=	dcledt	
				m0=h*dce_lipdt(t(i),ce_lip(i),ci_lip(i),cle(i),cv_lip(i));																						%	M	
terms	=	dcedt	
				n0=h*dci_lipdt(t(i),ce_lip(i),ci_lip(i));																																							%	N	
terms	=	dcidt	
					
				%	Second	order	terms	
				k1=h*dcv_lipdt(t(i)+h/2,cv_lip(i)+k0/2,cle(i)+l0/2,ce_lip(i)+m0/2);	
				l1=h*dcledt(t(i)+h/2,cle(i)+l0/2);	
				m1=h*dce_lipdt(t(i),ce_lip(i)+m0/2,ci_lip(i)+n0/2,cle(i)+l0/2,cv_lip(i)+k0/2);	
				n1=h*dci_lipdt(t(i),ce_lip(i)+m0/2,ci_lip(i)+n0/2);	
					
				%	Third	order	terms	
				k2=h*dcv_lipdt(t(i)+h/2,cv_lip(i)+k1/2,cle(i)+l1/2,ce_lip(i)+m1/2);	
				l2=h*dcledt(t(i)+h/2,cle(i)+l1/2);	
				m2=h*dce_lipdt(t(i),ce_lip(i)+m1/2,ci_lip(i)+n1/2,cle(i)+l1/2,cv_lip(i)+k1/2);	
				n2=h*dci_lipdt(t(i),ce_lip(i)+m1/2,ci_lip(i)+n1/2);	
					
				%	Fourth	order	terms	
				k3=h*dcv_lipdt(t(i)+h,cv_lip(i)+k2,cle(i)+l2,ce_lip(i)+m2);	
				l3=h*dcledt(t(i)+h,cle(i)+l2);	
				m3=h*dce_lipdt(t(i)+h,ce_lip(i)+m2,ci_lip(i)+n2,cle(i)+l2,cv_lip(i)+k2);	
				n3=h*dci_lipdt(t(i)+h,ce_lip(i)+m2,ci_lip(i)+n2);	
					
				cv_lip(i+1)	=	cv_lip(i)	+	(1/6)*(k0+2*k1+2*k2+k3);	
				cle(i+1)	=	cle(i)	+	(1/6)*(l0+2*l1+2*l2+l3);	
				ce_lip(i+1)	=	ce_lip(i)	+	(1/6)*(m0+2*m1+2*m2+m3);	
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				ci_lip(i+1)	=	ci_lip(i)	+	(1/6)*(n0+2*n1+2*n2+n3);	
end	
	
clear	k0	k1	k2	k3	l0	l1	l2	l3	m0	m1	m2	m3	n0	n1	n2	n3	
	
figure;	
subplot(5,1,1);plot(t,clv(t));ylabel('clv');	
subplot(5,1,2);plot(t,cv_lip);ylabel('cv');	
subplot(5,1,3);plot(t,cle);ylabel('cle');	
subplot(5,1,4);plot(t,ce_lip);ylabel('ce');	
subplot(5,1,5);plot(t,ci_lip);ylabel('ci');	
	
	
%%	Next	for	thermoliposome	injection	
clear	t	
	
%	Parameters	
td	=	60;	%	Duration	of	hyperthermia	(min)	
th		=	120;	%	Time	after	injection	hyperthermia	starts	(min)	
taurelow	=	24*60;	%	minutes	
taurvlow	=	24*60;	%	minutes	
taurehigh	=	0.72;	%	(min)	
taurvhigh	=	0.72;	%	(min)	
E	=	50;	%	Enhancement	factor	on	tumor	permeability	of	liposomes	
	
tfinal	=	6000;	%	Larger	time	scale	needed	for	slow	release	liposomes	
h	=	0.1;	
	
%	Define	the	ODE	function	handles	
%	No	new	ODE	equations	
	
%	Initial	Condition	
t(1)	=	0;	
Tcv_lip(1)	=	0;				%mg/mL	
Tcle(1)	=	0;	
Tce_lip(1)	=	0;	
Tci_lip(1)	=	0;	
	
%	Redefine	the	ODE	function	handles	
%	New	equations	
clv	=	@	(x)	(D_L/DG)*(A1*exp(-Kk1*x)+A2*exp(-Kk2*x));	
dcv_lipdt	=	@	(x,cv_lip,cle,ce_lip)	(-Vt/VB)*P*ST*(cv_lip-ce_lip)+A*VB*(clv(x)/taurv)-
alpha*cv_lip;	
dcledt	=	@	(x,cle)	PL*St*(clv(x)-cle)-(cle/taure);	
%	Include	a	term	in	the	equation	below	to	represent	release	from	liposomes	
dce_lipdt	=	@(x,ce_lip,ci_lip,cle,cv_lip)	P*St*(cv_lip-ce_lip)-
dc*Vmax*((ce_lip/(ce_lip+(ke*phi))-(ci_lip/(ci_lip+ki))))+cle/taure;		
%	No	change	in	the	equation	below	
dci_lipdt	=	@(x,ce_lip,ci_lip)	1e6*Vmax*((ce_lip/(ce_lip+(ke*phi)))-(ci_lip/(ci_lip+ki)));	
	
%	Use	Runge-Kutta	to	Solve	for	cv,	cle,	ce,	ci	
for	i	=	1:ceil(tfinal/h)	
				t(i+1)	=	t(i)+h;	
					
				%	First	order	Terms	
				k0=h*dcv_lipdt(t(i),Tcv_lip(i),Tcle(i),Tce_lip(i));																																%	K	
terms	=	dcvdt	
				l0=h*dcledt(t(i),Tcle(i));																																																							%	L	
terms	=	dcledt	
				m0=h*dce_lipdt(t(i),Tce_lip(i),Tci_lip(i),Tcle(i),Tcv_lip(i));																						%	M	
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terms	=	dcedt	
				n0=h*dci_lipdt(t(i),Tce_lip(i),Tci_lip(i));																																							%	N	
terms	=	dcidt	
					
				%	Second	order	terms	
				k1=h*dcv_lipdt(t(i)+h/2,Tcv_lip(i)+k0/2,Tcle(i)+l0/2,Tce_lip(i)+m0/2);	
				l1=h*dcledt(t(i)+h/2,Tcle(i)+l0/2);	
				m1=h*dce_lipdt(t(i),Tce_lip(i)+m0/2,Tci_lip(i)+n0/2,Tcle(i)+l0/2,Tcv_lip(i)+k0/2);	
				n1=h*dci_lipdt(t(i),Tce_lip(i)+m0/2,Tci_lip(i)+n0/2);	
					
				%	Third	order	terms	
				k2=h*dcv_lipdt(t(i)+h/2,Tcv_lip(i)+k1/2,Tcle(i)+l1/2,Tce_lip(i)+m1/2);	
				l2=h*dcledt(t(i)+h/2,Tcle(i)+l1/2);	
				m2=h*dce_lipdt(t(i),Tce_lip(i)+m1/2,Tci_lip(i)+n1/2,Tcle(i)+l1/2,Tcv_lip(i)+k1/2);	
				n2=h*dci_lipdt(t(i),Tce_lip(i)+m1/2,Tci_lip(i)+n1/2);	
					
				%	Fourth	order	terms	
				k3=h*dcv_lipdt(t(i)+h,Tcv_lip(i)+k2,Tcle(i)+l2,Tce_lip(i)+m2);	
				l3=h*dcledt(t(i)+h,Tcle(i)+l2);	
				m3=h*dce_lipdt(t(i)+h,Tce_lip(i)+m2,Tci_lip(i)+n2,Tcle(i)+l2,Tcv_lip(i)+k2);	
				n3=h*dci_lipdt(t(i)+h,Tce_lip(i)+m2,Tci_lip(i)+n2);	
					
				Tcv_lip(i+1)	=	Tcv_lip(i)	+	(1/6)*(k0+2*k1+2*k2+k3);	
				Tcle(i+1)	=	Tcle(i)	+	(1/6)*(l0+2*l1+2*l2+l3);	
				Tce_lip(i+1)	=	Tce_lip(i)	+	(1/6)*(m0+2*m1+2*m2+m3);	
				Tci_lip(i+1)	=	Tci_lip(i)	+	(1/6)*(n0+2*n1+2*n2+n3);	
					
				if	abs(t(i)-th)<(h/2);	%	At	the	time	where	heat	is	first	applied	
								taure	=	taurehigh;	
								PL	=	E	*	PL;	
									
								clv	=	@	(x)	(D_L/DG)*(A1*exp(-Kk1*x)+A2*exp(-Kk2*x));	
								dcv_lipdt	=	@	(x,cv_lip,cle,ce_lip)	(-Vt/VB)*P*ST*(cv_lip-
ce_lip)+A*VB*(clv(x)/taurv)-alpha*cv_lip;	
								dcledt	=	@	(x,cle)	PL*St*(clv(x)-cle)-(cle/taure);	
								dce_lipdt	=	@(x,ce_lip,ci_lip,cle,cv_lip)	P*St*(cv_lip-ce_lip)-
dc*Vmax*((ce_lip/(ce_lip+(ke*phi))-(ci_lip/(ci_lip+ki))))+cle/taure;	
								dci_lipdt	=	@(x,ce_lip,ci_lip)	1e6*Vmax*((ce_lip/(ce_lip+(ke*phi)))-
(ci_lip/(ci_lip+ki)));	
									
				elseif	abs(t(i)-(th+td))<(h/2);	%	At	the	time	where	heat	is	removed	
								taure	=	taurelow;	
								PL	=	PL	/	E;	
									
								clv	=	@	(x)	(D_L/DG)*(A1*exp(-Kk1*x)+A2*exp(-Kk2*x));	
								dcv_lipdt	=	@	(x,cv_lip,cle,ce_lip)	(-Vt/VB)*P*ST*(cv_lip-
ce_lip)+A*VB*(clv(x)/taurv)-alpha*cv_lip;	
								dcledt	=	@	(x,cle)	PL*St*(clv(x)-cle)-(cle/taure);	
								dce_lipdt	=	@(x,ce_lip,ci_lip,cle,cv_lip)	P*St*(cv_lip-ce_lip)-
dc*Vmax*((ce_lip/(ce_lip+(ke*phi))-(ci_lip/(ci_lip+ki))))+cle/taure;		
								dci_lipdt	=	@(x,ce_lip,ci_lip)	1e6*Vmax*((ce_lip/(ce_lip+(ke*phi)))-
(ci_lip/(ci_lip+ki)));	
				end	
end	
	
clear	k0	k1	k2	k3	l0	l1	l2	l3	m0	m1	m2	m3	n0	n1	n2	n3	
	
figure;	
subplot(5,1,1);plot(t,clv(t));ylabel('clv');	
subplot(5,1,2);plot(t,Tcv_lip);ylabel('cv');	
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subplot(5,1,3);plot(t,Tcle);ylabel('cle');	
subplot(5,1,4);plot(t,Tce_lip);ylabel('ce');	
subplot(5,1,5);plot(t,Tci_lip);ylabel('ci');	
	
	
	
	
%%	Next	for	thermoliposome	injection	
clear	t	
	
%	Parameters	
td	=	10;	%	Duration	of	hyperthermia	(min)	
ths		=	[120,240,360,480,600,720];	%	Time	after	injection	hyperthermia	starts	(min)	
taurelow	=	24*60;	%	minutes	
taurvlow	=	24*60;	%	minutes	
taurehigh	=	0.72;	%	(min)	
taurvhigh	=	0.72;	%	(min)	
E	=	50;	%	Enhancement	factor	on	tumor	permeability	of	liposomes	
	
tfinal	=	6000;	%	Larger	time	scale	needed	for	slow	release	liposomes	
h	=	0.1;	
	
%	Define	the	ODE	function	handles	
%	No	new	ODE	equations	
	
%	Initial	Condition	
t(1)	=	0;	
Tcv_lip(1)	=	0;				%mg/mL	
Tcle(1)	=	0;	
Tce_lip(1)	=	0;	
Tci_lip(1)	=	0;	
	
%	Redefine	the	ODE	function	handles	
%	New	equations	
clv	=	@	(x)	(D_L/DG)*(A1*exp(-Kk1*x)+A2*exp(-Kk2*x));	
dcv_lipdt	=	@	(x,cv_lip,cle,ce_lip)	(-Vt/VB)*P*ST*(cv_lip-ce_lip)+A*VB*(clv(x)/taurv)-
alpha*cv_lip;	
dcledt	=	@	(x,cle)	PL*St*(clv(x)-cle)-(cle/taure);	
%	Include	a	term	in	the	equation	below	to	represent	release	from	liposomes	
dce_lipdt	=	@(x,ce_lip,ci_lip,cle,cv_lip)	P*St*(cv_lip-ce_lip)-
dc*Vmax*((ce_lip/(ce_lip+(ke*phi))-(ci_lip/(ci_lip+ki))))+cle/taure;		
%	No	change	in	the	equation	below	
dci_lipdt	=	@(x,ce_lip,ci_lip)	1e6*Vmax*((ce_lip/(ce_lip+(ke*phi)))-(ci_lip/(ci_lip+ki)));	
	
%	Use	Runge-Kutta	to	Solve	for	cv,	cle,	ce,	ci	
for	i	=	1:ceil(tfinal/h)	
				for	j	=	1:length(ths)	
								t(i+1)	=	t(i)+h;	
	
								%	First	order	Terms	
								k0=h*dcv_lipdt(t(i),Tcv_lip(i),Tcle(i),Tce_lip(i));																																%	
K	terms	=	dcvdt	
								l0=h*dcledt(t(i),Tcle(i));																																																							%	L	
terms	=	dcledt	
								m0=h*dce_lipdt(t(i),Tce_lip(i),Tci_lip(i),Tcle(i),Tcv_lip(i));																						
%	M	terms	=	dcedt	
								n0=h*dci_lipdt(t(i),Tce_lip(i),Tci_lip(i));																																							%	
N	terms	=	dcidt	
	
								%	Second	order	terms	
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								k1=h*dcv_lipdt(t(i)+h/2,Tcv_lip(i)+k0/2,Tcle(i)+l0/2,Tce_lip(i)+m0/2);	
								l1=h*dcledt(t(i)+h/2,Tcle(i)+l0/2);	
								m1=h*dce_lipdt(t(i),Tce_lip(i)+m0/2,Tci_lip(i)+n0/2,Tcle(i)+l0/2,Tcv_lip(i)+k0/2);	
								n1=h*dci_lipdt(t(i),Tce_lip(i)+m0/2,Tci_lip(i)+n0/2);	
	
								%	Third	order	terms	
								k2=h*dcv_lipdt(t(i)+h/2,Tcv_lip(i)+k1/2,Tcle(i)+l1/2,Tce_lip(i)+m1/2);	
								l2=h*dcledt(t(i)+h/2,Tcle(i)+l1/2);	
								m2=h*dce_lipdt(t(i),Tce_lip(i)+m1/2,Tci_lip(i)+n1/2,Tcle(i)+l1/2,Tcv_lip(i)+k1/2);	
								n2=h*dci_lipdt(t(i),Tce_lip(i)+m1/2,Tci_lip(i)+n1/2);	
	
								%	Fourth	order	terms	
								k3=h*dcv_lipdt(t(i)+h,Tcv_lip(i)+k2,Tcle(i)+l2,Tce_lip(i)+m2);	
								l3=h*dcledt(t(i)+h,Tcle(i)+l2);	
								m3=h*dce_lipdt(t(i)+h,Tce_lip(i)+m2,Tci_lip(i)+n2,Tcle(i)+l2,Tcv_lip(i)+k2);	
								n3=h*dci_lipdt(t(i)+h,Tce_lip(i)+m2,Tci_lip(i)+n2);	
	
								Tcv_lip(i+1)	=	Tcv_lip(i)	+	(1/6)*(k0+2*k1+2*k2+k3);	
								Tcle(i+1)	=	Tcle(i)	+	(1/6)*(l0+2*l1+2*l2+l3);	
								Tce_lip(i+1)	=	Tce_lip(i)	+	(1/6)*(m0+2*m1+2*m2+m3);	
								Tci_lip(i+1)	=	Tci_lip(i)	+	(1/6)*(n0+2*n1+2*n2+n3);	
	
								if	abs(t(i)-ths(j))<(h/2);	%	At	the	time	where	heat	is	first	applied	
												taure	=	taurehigh;	
												PL	=	E	*	PL;	
	
												clv	=	@	(x)	(D_L/DG)*(A1*exp(-Kk1*x)+A2*exp(-Kk2*x));	
												dcv_lipdt	=	@	(x,cv_lip,cle,ce_lip)	(-Vt/VB)*P*ST*(cv_lip-
ce_lip)+A*VB*(clv(x)/taurv)-alpha*cv_lip;	
												dcledt	=	@	(x,cle)	PL*St*(clv(x)-cle)-(cle/taure);	
												dce_lipdt	=	@(x,ce_lip,ci_lip,cle,cv_lip)	P*St*(cv_lip-ce_lip)-
dc*Vmax*((ce_lip/(ce_lip+(ke*phi))-(ci_lip/(ci_lip+ki))))+cle/taure;	
												dci_lipdt	=	@(x,ce_lip,ci_lip)	1e6*Vmax*((ce_lip/(ce_lip+(ke*phi)))-
(ci_lip/(ci_lip+ki)));	
	
								elseif	abs(t(i)-(ths(j)+td))<(h/2);	%	At	the	time	where	heat	is	removed	
												taure	=	taurelow;	
												PL	=	PL	/	E;	
	
												clv	=	@	(x)	(D_L/DG)*(A1*exp(-Kk1*x)+A2*exp(-Kk2*x));	
												dcv_lipdt	=	@	(x,cv_lip,cle,ce_lip)	(-Vt/VB)*P*ST*(cv_lip-
ce_lip)+A*VB*(clv(x)/taurv)-alpha*cv_lip;	
												dcledt	=	@	(x,cle)	PL*St*(clv(x)-cle)-(cle/taure);	
												dce_lipdt	=	@(x,ce_lip,ci_lip,cle,cv_lip)	P*St*(cv_lip-ce_lip)-
dc*Vmax*((ce_lip/(ce_lip+(ke*phi))-(ci_lip/(ci_lip+ki))))+cle/taure;		
												dci_lipdt	=	@(x,ce_lip,ci_lip)	1e6*Vmax*((ce_lip/(ce_lip+(ke*phi)))-
(ci_lip/(ci_lip+ki)));	
													
												j	=	j+1;	
								end	
				end	
end	
	
clear	k0	k1	k2	k3	l0	l1	l2	l3	m0	m1	m2	m3	n0	n1	n2	n3	
	
figure;	
subplot(5,1,1);plot(t,clv(t));ylabel('clv');	
subplot(5,1,2);plot(t,Tcv_lip);ylabel('cv');	
subplot(5,1,3);plot(t,Tcle);ylabel('cle');	
subplot(5,1,4);plot(t,Tce_lip);ylabel('ce');	
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subplot(5,1,5);plot(t,Tci_lip);ylabel('ci');	
	
	

 


